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Abstract—The 3D Gaussian Splatting method has recently
shown significant advancements in rendering speed and scene
composition quality, enhancing its industrial applications and
boosting the demand for 3D Gaussian asset generation. However,
existing mature 3D generation technologies predominantly rely
on implicit representations, which often struggle to balance
geometric quality with editability. The production of 3D Gaussian
assets generally involves diffusion models that require a dual-
stage process of reconstruction and generation, resulting in
substantial training and inference costs. To overcome these
challenges, we introduce GET3DGS, an innovative approach
that combines 3D-aware GANs with 3D Gaussian Splatting
representations. This method facilitates the manipulation of the
physical attributes of 3D Gaussians, such as geometry and tex-
ture, via point deformation fields. Offering faster inference speeds
and end-to-end training capabilities, our model outperforms
existing diffusion model-based methods. By deriving high-quality
Gaussian point cloud geometric representations from 2D images,
our approach reduces material accumulation costs and produces
data compatible with 3D Gaussian rendering engines. We have
evaluated the generative performance of our model on ShapeNet
and OmniObject3D and demonstrate competitive results in terms
of image and geometric quality relative to previous methods.

Index Terms—3D Gaussian Splatting, 3D generation, Differ-
entiable rendering.

I. INTRODUCTION

GENERATING 3D assets is crucial in constructing the
digital world, and it is essential to minimize the cost

of acquiring these assets. Currently, the acquisition of 3D
assets primarily involves reconstruction techniques based on
foreground-background disentangling methods, physical and
mathematical approaches, and 3D generation methods.

Recent advancements in scene synthesis primarily depend
on methods that separate the reconstruction of dynamic and
static objects, facilitating scene editing and synthesis from per-
spectives not visible in the original dataset [1]–[8]. However,
these approaches often fail to acquire assets beyond those in
the dataset, which limits diversity and controllability. Alter-
natively, some methods integrate with traditional rendering
engines [9] and employ mathematical techniques alongside
large language models [10] to organize assets. These methods
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typically require substantial asset collections, resulting in
prohibitive costs.

Previous studies [1]–[3], [11]–[14] have predominantly
utilized neural radiance fields (NeRF) [15] for 3D shape
generation due to their impressive representation capabili-
ties. However, NeRF fully relies on implicit representations,
necessitating the use of explicit geometric representations
through Marching Cubes algorithms [16]. This additional step
not only complicates the editing process but also affects the
accuracy and precision of the geometry. Other researchers have
explored the use of pre-trained 2D diffusion models [17]–
[20] for 3D shape generation, incorporating score distillation
sampling (SDS) [17] to extend the knowledge of diffusion
models to 3D spaces. While these methods benefit from rich
scene knowledge in diffusion models, they are limited by
computational inefficiencies arising from the time-consuming
nature of diffusion sampling and subsequent reconstruction.

3D Gaussian Splatting [21] (3DGS) employs rasterization,
resulting in an explicit geometric representation akin to a point
cloud. This allows for direct manipulation using existing tools
and offers rendering speeds on par with those of mesh models.
The technique effectively bridges the gap between rapid scene
construction and robust editing capabilities. Consequently, it
is imperative to investigate methodologies for the rapid and
high-fidelity generation of 3DGS assets.

Current research predominantly integrates diffusion mod-
els with 3DGS to divide the generation task into a two-
stage pipeline: generation and reconstruction. Most studies
employ 3DGS during the reconstruction phase [22], [23],
with minimal emphasis on the intrinsic generation capabilities
of 3D Gaussians. Our work focuses on developing high-
fidelity methods for generating 3D Gaussians, aiming to create
intelligent generation plugins compatible with 3D Gaussian
rendering engines. This research endeavor seeks to address
the lack of 3D Gaussian asset generation and expedite the
development and deployment of intelligent simulation engines
utilizing 3DGS.

Generating high-fidelity 3D Gaussians presents several chal-
lenges. The inherent design of 3DGS often omits additional
networks, relying instead on the direct optimization of specific
attributes. This limitation restricts the generation capabilities
by preventing the direct addition of noise. To overcome this,
we introduce GET3DGS, a novel approach that utilizes points
deformation fields for 3D Gaussians. This method incorporates
geometry collapse fields and points SH fields, offering a
controlled interface for generating physical attributes from
both geometric and textural perspectives. It permits indepen-
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dent manipulation of geometry and texture noise. Moreover,
to mitigate instability during GAN training, we propose a
progressive densification training strategy that integrates the
progressive training approach of GANs with the densification
of 3D Gaussians.

Our model efficiently learns high-quality three-dimensional
geometric representations from two-dimensional images,
thereby significantly reducing asset accumulation costs. This
approach supports direct data generation that is compatible
with three-dimensional Gaussian rendering engines, enhancing
data-driven scene synthesis. Our model is particularly adept
at disentangling texture and shape representations from two-
dimensional images, which allows for disentangled manipula-
tion of attributes. This capability ensures substantial variability
and adaptability in the outputs, effectively addressing issues of
poor generalization and diversity. Utilizing a GAN architec-
ture, our model achieves rapid sampling speeds, comparable
to those reported in GET3D [24], thereby decreasing inference
time and enhancing usability for real-world applications. By
leveraging three-dimensional Gaussians, our model ensures
the production of high-fidelity images and geometries with-
out compromising geometric accuracy, which is critical for
applications in three-dimensional graphics, virtual reality, and
simulation.

We assessed our model using the ShapeNet [25] and Om-
niObject3D [26] datasets, achieving superior performance over
prior studies in terms of geometric and image synthesis quality.
Additionally, comparisons with existing point cloud generation
methodologies demonstrated that the geometric quality of the
outcomes from our model is on par with those dedicated solely
to geometry generation.

Our contributions are summarized as follows:

• We propose a high-fidelity asset generator utilizing 3D
Gaussian representations, which allows for controlled
generation of shape and texture in 3D Gaussian assets.

• We introduce a template-based point cloud deformation
method, named points deformation fields, that maps
Gaussian point cloud templates to target dataset distri-
butions.

• We propose a progressive densification training strategy
that utilizes multi-resolution progression to enhance the
densification of 3D Gaussians, resulting in rapid and
stable training.

II. RELATED WORK

3D Gaussian Splatting. The standard depiction of Gaus-
sians as ellipsoids shows that 3D Gaussians and ellipsoids
are isomorphic. Eq. (1) illustrates this normalized ellipsoid
representation. This isomorphism implies that a sufficiently
detailed combination of these models can construct any ge-
ometric shape in 3D space. 3D Gaussians possess inherent
properties such as spatial coordinate X , anisotropic covariance
Σ, opacity ρ, and spherical harmonics coefficients SHs. The
anisotropic covariance includes rotation factors Ψ and scaling
S, as depicted in Eq. (2), with the final ellipsoidal shape being
derived through axis-specific scaling followed by rotation.

G(X) = e−
1
2 (X)TΣ−1(X) (1)

Σ = ΨSSTΨT (2)

Ellipsoids are projected onto a plane using a rapid rasteriza-
tion rendering pipeline to generate 2D images. The projection
formula, given a transformation matrix W and the Jacobian
matrix J of the affine transformation for projective mapping,
is described by Eq. (3).

Σ
′
= JWΣWTJT (3)

Eq. (4) presents the rendering method, where ci represents
the color of the ith 3D Gaussians within a pixel, as determined
from the corresponding perspective using spherical harmonic
coefficients (SHs). N denotes the number of points currently
covered by the pixel. These points, organized by depth, are
accumulated through a pointwise process.

C =
∑
i∈N

ciρi

i−1∏
j=1

(1− ρj), (4)

The 3D Gaussian model employs the attributes of its dis-
tribution as directly trainable parameters, omitting any neural
network layers. It undergoes training using a reconstruction
loss function and is densified at a predetermined frequency.

Our study utilizes 3DGS for 3D representation, enhancing
this approach with supplementary networks to produce 3DGS
assets. By employing differentiable rendering coupled with
Gaussian rasterization, we refine the physical attributes of
Gaussian point clouds. Additionally, our methodology includes
a densification process for 3D Gaussians, which establishes a
robust training pipeline.
3D Generation. Classified by the mode of representation, the
task of generating 3D models is primarily divided into four
categories: mesh generation [24], [27]–[29], 3D point clouds
generation [30]–[41], surface generation through SDF [42]–
[45], and implicit methods epitomized by NeRF [2], [3], [13],
[14], [46]–[48]. Two main approaches facilitate the 3D genera-
tion tasks: 3D-aware GANs or the integration of reconstruction
and diffusion models. References [22], [23], [49] pioneer the
integration of 3DGS with diffusion models to generate 3D
models from text prompts. Works utilizing differentiable ren-
dering, categorized as 3D-aware generation [2], [3], [13], [14],
[47], aim to learn 3D implicit representations from 2D images
[50]. Studies [24], [51], [52] use 2D images to learn explicit
mesh structures. Investigations such as [24], [39], [47], [48]
have achieved controllable generation by exploring the latent
space of models.

Our research aligns with these models and focuses on
utilizing a texture-geometry disentangled latent space for con-
trollable and rapid generation of 3DGS assets. This is achieved
through the use of generative adversarial networks that are
self-supervised via 2D rendering.
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Fig. 1. The main architecture diagram of our model GET3DGS, which is a 3D-aware GAN structure. The network includes geometry collapse fields and
points SH fields. These two fields jointly constitute the points deformation fields. Both fields have generator blocks, feature aggregate modules, and an MLP
decoder.

III. METHOD

The primary challenge in generating 3D Gaussians lies in
accurately producing their physical properties. For uncondi-
tional generation, a pragmatic solution involves enhancing
the 3D Gaussian framework with an additional network. This
network converts a random noise distribution into a structured
distribution that represents physical attributes. This method of
network augmentation, previously applied in the field of 4D
Gaussians [53], [54], begins with the training of a 3D Gaussian
model, followed by a Multilayer Perceptron (MLP) network.
The MLP is tasked with learning and adapting to the temporal
dynamics of the physical attributes of point clouds, thereby
facilitating the generation of 4D scenes.

Nevertheless, this methodology centers on understanding
temporal deformations within established 3D Gaussians. In
generative tasks, the final distribution of point clouds remains
unpredictable. Although pre-trained 3D Gaussian point clouds
do not exist, utilizing an initial point cloud template and
learning the deformation mapping to the desired target is
feasible, inspired by the concept of 4D Gaussians. Introducing
noise can facilitate the production of diverse outputs, thereby
supporting varied generative processes. Similarly, for point
cloud colors, employing a technique akin to shape processing
that maps noise to their Spherical Harmonics (SH) distribution
can achieve detailed color representations.

Similar to other explicit and implicit 3D representations,
the attributes of 3D Gaussians are divided into geometric
and texture color attributes. Geometric attributes in our model
encompass coordinates, rotation, scaling, and opacity, whereas
texture color attributes are defined exclusively by spherical

harmonic coefficients. Previous studies, including references
[2], [3] and [13], have demonstrated that texture color is
influenced by geometric attributes.

Feature fields are essential for linking physical attribute
distributions with noise distributions in 3D generation tasks.
Consequently, providing detailed 3DGS features on a point-
by-point basis is crucial. Furthermore, to comply with par-
allelization requirements, the number of 3DGS points must
be consistent within each batch. To address this, Gaussian
template points have been designed to meet these fixed-number
requirements.

To address the requirements of point-wise feature assign-
ment and accommodate the geometric and texture attributes
of 3D Gaussians, we propose a model that incorporates
geometry collapse fields (Section III-A) and points SH fields
(Section III-B). The geometry collapse fields reposition the
template Gaussian point cloud and derive parameters for
scaling, rotation, and opacity adjustments. The points SH
fields predict the spherical harmonic coefficients following
template deformation. Furthermore, to improve training speed
and stability, we introduce a progressive densification training
strategy (Section III-C). The overall architecture of our model
is illustrated in Fig. 1.

We treat the points deformation fields as the generator.
During training, we utilize adversarial loss to optimize the
generator and the discriminator in sequence. Specifically, two
noises are randomly sampled from a normal distribution and
simultaneously input into the points deformation fields, which
outputs five attributes of 3DGS. These attributes are then
combined to form a 3DGS model, and images are rendered
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using the 3DGS differentiable rasterizer that supports batch
rendering. The discriminator receives the images rendered by
the renderer and the sampled images from the dataset until
the generator achieves distribution fitting. During inference,
it is possible to simultaneously sample two noise inputs for
unconditional 3DGS asset generation, or to fix one of the
noises while sampling the other for disentangled control.

A. Geometry Collapse Fields

The geometry collapse fields are designed to map the
template point cloud to a specific distribution. The geometry
deformation network accepts point coordinate x⃗ as inputs
and outputs the mapped positions x⃗′, denoted as CF . Con-
sequently, the mapping process is formulated as shown in
Eq. (5).

x⃗′ = CF (x⃗) (5)

However, it is an undeniable fact that training a simple
network, such as na MLP, requires mapping a large number
of points to their appropriate positions, thereby creating an
extremely large solution space. Given the unordered nature of
point cloud data, deformations do not adhere to a bijective
mapping. A point may be present both at the front and
the rear of a vehicle; however, this does not alter the final
configuration of the point cloud. Once the network achieves
sufficient robustness, it can autonomously compensate for
any missing elements. Such a vast solution space negatively
impacts network training, potentially resulting in significant
failures during the training of GANs.

To address the vast solution spaces, one possible strategy
is to restrict morphological changes to the radial direction,
requiring points on the template to move only toward the
origin. This method reduces the volume of the solution space
and enhances the stability of the network. However, empirical
evidence from our experiments suggests that this approach
does not guarantee stability during the training process and
adversely affects the rendering quality. This is primarily due
to difficulties in capturing high-frequency details. The distribu-
tion of frequencies in an object’s texture and volume is highly
uneven, and the template lacks the capability to predict which
regions need a denser point cloud to maintain texture fidelity.
Consequently, areas with intricate details, such as car tires
and patterns, often fail to replicate textures accurately due to
insufficient point density.

In optimize the volume of the solution space and the density
of the point cloud, we introduce a strategy involving density
correction followed by radial collapse, as illustrated in Fig. 3.
This approach entails computing the radial and rotational
angle offsets for a template within spherical coordinates. The
deformation function is segmented into radial and rotational
components, as delineated in Eq. (6).

CF (x⃗) = T ◦R(x⃗) (6)

CF (r, θ, φ) = T ◦R(r, θ, φ) = T (r, θ + δθ, φ+ δφ)

= r − δr, θ + δθ, φ+ δφ

= r − r̂r, θ + θ̂ · 2π, φ+ φ̂ · π
(7)

We employ spherical coordinate representation to simplify
the expression, as indicated in Eq. (7). The rotation function
introduces an offset δφ and δθ to the elevation angle φ
and azimuth angle θ, respectively. Simultaneously, the radial
function decreases the radius r by a specific offset δr. Where,
δφ ∈ [0, π], δθ ∈ [0, 2π], δr ∈ [0, r]. To align the network
outputs, we use normalized values of three offsets, where
θ̂ ∈ [0, 1], φ̂ ∈ [0, 1], r̂ ∈ [0, 1]. Normalized outputs enhance
network stability and can be readily constrained by activation
functions.

To generate diverse outputs, we add noise as input to the
geometry collapse fields, as Eq. (8) shows, where r̂zg , θ̂zg , φ̂zg

are part of the geometry collapse network outputs.

CF ([r, θ, φ], zg)

= (r − r̂zg
r, θ + θ̂zg

· 2π, φ+ φ̂zg
· π)

= (r, θ, φ) + (−r, 2π, π) · diag(r̂zg
, θ̂zg

, φ̂zg
)

(8)

Utilizing traditional models such as dense MLPs as geom-
etry collapse networks is typically inadvisable due to their
insufficient three-dimensional perceptual capabilities. The tri-
plane approach proposed by EG3D [14] may lead to data
redundancy through unsampled regions on the planes. To
address this, we introduce the feature aggregate module as
depicted in Fig. 2. We have developed a bi-plane structure
tailored for spherical point cloud templates. This structure in-
volves positioning plane features around the spherical surface,
thereby wrapping the planes around it. Subsequent sampling
of template point clouds on the spherical surface ensures
efficient utilization of plane features. Features derived from
sampling across two spherical surfaces are concatenated and
processed through a shallow MLP network to decode the
deformation variables. Feature sampling involves interpolation
operations, which enhance feature smoothness. To compensate
for potential losses, we employ position encoding integrated
with plane sampling features.

Specifically, the geometric noise zg is encoded as a styled
vector wg of the geometric in W-space using an MLP Mg ,
and the generator block of StyleGAN2 [55] Gg(·) is used
to synthesize two planes covered with features. Then the
coordinate position of the template x⃗ = (r, θ, φ) is used for
grid sampling and feature aggregating FA(·, ·, ·), outputs the
geometric perception features fg . The MLP network F (·, ·, ·)
accepts style vectors wg , geometric perception features fg and
hash position encode Hg(x⃗) as inputs, decodes them into spe-
cific offsets r̂zg , θ̂zg , φ̂zg and calculates the specific position
of the deformed point cloud using deformation module DM
(x′ = DM(x̂)). By integrating the remaining attributes of 3D
Gaussians into the equation, the final mathematical representa-
tion of geometric collapse fields is presented in Eq. (9). Where
[·, ·, · · · , ·] denotes the operation of constructing a horizontal
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vector by element flattening, Ψ,S,ρ denote the rotation, scaling
and opacity of 3D Gaussians.

[x⃗′
zg ,Ψzg , Szg , ρzg ] = CF (x⃗, zg) = CF ([r, θ, φ], zg)

= [DM([r̂zg , θ̂zg , φ̂zg ]),Ψzg , Szg , ρzg ]

= [r, θ, φ, 0⃗] + [−r, 2π, π, 1⃗] · J

where J = diag([r̂zg , θ̂zg , φ̂zg ,Ψzg , Szg , ρzg ])

= diag(Fg(FA(Gg(Mg(zg)), θ, φ),Mg(zg), Hg(x⃗)))

(9)

We employ various activation functions to constrain the
physical attributes output by the geometry collapse fields.
Specifically, for opacity and radius offset, we use the sigmoid
function to constrain them within the range [0, 1]. For rotation
quaternions, we utilize the tanh activation function to confine
them within the range [-1, 1]. Regarding scaling, we set a
scaling threshold multiplied by the sigmoid function to prevent
large-scale ellipsoidal obstructions of the view during network
initialization. This is to avoid gradient instability that could
result from excessively high scaling factors.

B. Points SH Fields

To generate the texture of 3D Gaussians, we use the same
structure as the geometry collapse fields. The texture noise zt
is encoded as a styled vector wt using an MLP Mt, and feed to
the textural generator block Gt(·). We also utilize two planes
to generate SH features and subsequently sample these features
to facilitate shape coloring. Given that texture is influenced
by shape, we employ geometric excitation for the points SH
fields at each point. Specifically, the features generated by the
module at each geometric resolution are input into the points
SH fields generation module at the corresponding resolution.
These are then combined with the color features, as illustrated
in Fig. 4.

Geometric excitation involves injecting the intermediate
features from the convolution of the geometry collapse fields
into the points SH fields and performing element-wise multi-
plication. This approach is akin to the style modulation used in
StyleGAN. We believe that this style modulation will ensure
that the feature content of the texture branch is not excessively
influenced by the excitation, but is instead modulated to enable
the texture to adapt to the geometric distribution.

The geometry and texture stylized vectors are concatenated
to guide the MLP decoder to output texture attributes of
3D Gaussians, where ⊕ denotes the concatenate operator.
As shown in Eq. (10), we adopt the same sampling and
aggregation methods as used for geometry collapse fields.
These are then input into a lightweight MLP Ft along with
shape features, to facilitate the learning of SH coefficients,
denoted as SHs.

SHs = SF (x⃗, zt, zg)

= Ft(FA(Gt(Mt(zt), Gg(Mg(zg))), θ, φ),

Mt(zt)⊕Mg(zg), Ht(x⃗))

(10)

C. Progressive Densification Training

Directly learning the geometry and color mapping of a
large number of point clouds is inherently complex. When
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Fig. 4. A schematic diagram of geometric exception, where geometric features are injected into texture features and fully fused for convolution.

employing GANs, learning the distributions of geometry and
texture can be slow and unstable. During the training of 3D
Gaussian models, the point count increases in each iteration
through a process known as splitting. To tackle this issue,
we propose a progressive densification training strategy for
point clouds that merges the concepts of progressive generator
resolution with the splitting of 3D Gaussians. Initially, a
resolution Rinit is selected, which sets the dimensions for
geometry collapse fields, points SH fields, and the resolution
for 3D Gaussian Splatting rendering.

As the number of iterations increases, the resolution is
doubled in the splitting process of 3D Gaussians. The inherent
capabilities of Gaussian point clouds for learnable rotation
and scaling obviate the need for reinitialization based on
point cloud distances during splitting. This prevents network
fluctuations and ensures training stability. Consequently, our
model progressively densifies by splitting coordinate positions,
thereby aligning point clouds with pixel resolution. At lower
resolutions, fewer 3D Gaussians are needed. In our self-
supervision approach, downsampled authentic images that lack
excessive details enable 3D Gaussians to approximate the
fundamental structure and color scheme of the object. High-
resolution training further refines these details.

The progressive densification progress is described by
Eq. (11). Where R represents the base 2 logarithm of the
current training resolution, x⃗ represents the coordinates of
the template point clouds, and α represents the proportion of
training completed progressively, which uniformly increases
from 0 to 1 throughout the training at the current resolution.

fRg (x⃗) = FA(GR
g (Mg(zg), θ, φ)

fRt (x⃗) = FA(GR
t (Mt(zt), G

R
g (Mg(zg))), θ, φ)

fRg (x⃗) = fRg (x⃗) · α+ fR−1
g (x⃗) · (1− α)

fRt (x⃗) = fRt (x⃗) · α+ fR−1
t (x⃗) · (1− α)

(11)

D. Gaussian Template

In our methodology, we utilize a mathematical model to
achieve uniform point distribution across the surface of a
sphere. This model calculates coordinates to ensure even
spacing throughout the sphere.

The process is initiates by calculating the total number of
points based on the resolution of the 3D Gaussian template.
For each point, we compute two essential spherical coordi-
nates: the polar angle ϕ and the azimuthal angle θ. These
calculations are as shown in Eq. (12).

ϕi = arccos

(
−1 +

2i+ 1

Ntemp

)
θi =

√
Ntempπ · ϕi

(12)

where i is the index of each point, and Ntemp is the total
number of points. To ensure the points wrap correctly around
the sphere, we apply modulo operations on the angles, with θ
adjusted by 2π and ϕ by π. This mathematical model enables
the uniform distribution of points across the surface of a
sphere.

TABLE I
DIFFERENT TEMPLATE DENSITIES AT VARIOUS RESOLUTIONS.

resolution Ntemp

128 (128× 128) 16384
256 (160× 160) 25600
512 (200× 200) 40000

Within our experimental framework, point cloud templates
with varying densities are generated at different resolutions by
progressively increasing the number of points as the resolution
rises. The detailed experimental configurations are presented
in Table I.

E. Training Loss

In this study, we adopted an adversarial loss function con-
sistent with GET3D. Moreover, no additional regularization
was necessary. The equation is presented as Eq. (13).
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L(Dx, G) = Ez∈N ,c∈C [g(Dx(Rgau(Ge(z), c)))]

+EIx∈px,c∈pc
[g(−Dx(Ix, c)) + λ||∇Dx(Ix, c)||22]

(13)

Where N represents the normal distribution, C signifies
the uniform distribution over a specified interval, Ge denotes
the entire generator, and Rgau represents the rasterization
rendering of 3DGS. The activation function is represented
by g(u) = −log(1 + e−u) while px and pc correspond to
the data distributions of real images and real camera labels,
respectively. The coefficient λ is the penalty term for the
discriminator. The overall loss function is shown in Eq. (14).

L = L(Dx, Ge) + L(Dmask, Ge) (14)

IV. EXPERIMENTS

A. Basic Settings

Baselines. We select 2D-to-3D methods, including GRAF
[1], Pi-GAN [11], PartNeRF [12], DiffTF [46], GET3D [24]
and GaussianCube [49] as the baselines for both image and
3D shape generation. Additionally, we choose 3D methods
such as PointFlow [33], DiT-3D [36], DPM [56], PSF [57]
and MeshDiffusion [58] for comparing point cloud generation
quality.
Datasets. ShapeNet [25] is a widely recognized dataset used
for the study and analysis of 3D shapes. This comprehensive
database contains a wide range of 3D models across various
categories. In our study, we adopted similar preprocessing,
rendering techniques, data splitting methods, and camera
viewpoints as those used in GET3D to create a 2D image
dataset focused on four categories: cars, chairs, motorbikes,
and airplanes.

The OmniObject3D [26] dataset is a large-scale collection
of real-world 3D models, comprising approximately 6000
models across 216 distinct categories. These models have
undergone precise scanning and detailed annotation. Com-
pared to ShapeNet, OmniObject3D includes fewer objects per
category.
Metrics. We followed the experimental setup of GET3D and
calculated FID and KID for 2D image quality, along with the
geometric metrics CD-COV and CD-MMD for point clouds.
Using ShapeNet, we generated 50K images for FID and KID
evaluation, and synthesized point clouds at five times the test
set size for geometric metrics. For OmniObject3D, we also
generated 50K images for FID and KID, and synthesized 5000
point clouds for comparison with 1000 real point clouds in
metric evaluation.

It is important to note that our model generates 3D Gaus-
sians instead of meshes, which contrasts with the traditional
approach of uniformly sampling point clouds across mesh
surfaces, as employed by GET3D. To ensure fair experimental
comparisons, we applied the Farthest Point Sampling (FPS)
technique to uniformly extract points from the 3D Gaussians.
We adhered to the standard of sampling 2048 points for metric
computation, consistent with GET3D and other benchmark
methods. These points were evaluated using the Coverage
Score (COV) and Minimum Matching Distance (MMD) met-
rics, with Chamfer Distance (CD) serving as the comparison

TABLE II
VALUES OF GAMMA ACROSS DIFFERENT DATASETS AND RESOLUTIONS.

Datasets resolution λ Datasets resolution λ
128 3200 128 3200

Car 256 3200 Chair 256 3200
512 3200 512 3200
128 3200 128 10

Motorbike 256 3200 Plane 256 3200
512 3200 512 -
128 10

OmniObject3D 256 10
512 40

metric. The calculation methods for CD, COV, and MMD are
shown in Eq. (15).

CD(X,Y ) =
∑
x∈X

min
y∈Y

||x− y||22 +
∑
y∈Y

min
x∈X

||x− y||22,

COV (SgSr) =
|{argminY ∈Sr CD(X,Y ) | X ∈ Sg}|

|Sr|
,

MMD (Sg, Sr) =
1

|Sr|
∑

Y ∈Sr

min
X∈Sg

CD(X,Y )

(15)

Hyper Parameters. The regularization parameter, λ, plays a
crucial role in tuning the generalization ability of the model by
penalizing complexity. For most datasets, λ is consistently set
to 3200 across all training resolutions to mitigate overfitting.
However, specific adjustments were made to accommodate
the unique characteristics of certain datasets. As Table II
shows, in the OmniObject3D dataset, λ was adjusted to 10 for
resolutions 128×128 and 256×256, and 40 for the 512×512
resolution. In our experiments , we set the dimensions of
zg, zt,wg,wt to 512. We use a mapping network with 8
layers to encode the noise zg, zt into wg,wt space. For
the hyperparameter of rendering, we adopt the experimental
settings of GET3D. We train our model with batchsize = 64.
In our experimental setup, cameras were positioned on the
surface of a sphere with a radius of 1.2. For the ShapeNet
and GAME datasets, the azimuth angle ranged from 0 to
2π, and the elevation angle was set from 0 to π/6. For the
OmniObject3D dataset, the elevation angle was adjusted to
range from 0 to π/2 radians. The FOV of the camera was set
to 50 degrees. In all experiments, the learning rate was set to
0.002.

B. Comparison with Baselines

The comparison experiments are categorized based on the
resolution of the datasets used for the baselines.

In Table III, a quantitative comparison between our model
and other baselines at a resolution of 128 × 128 is presented.
Our model outperforms others across four metrics: FID, KID,
COV, and MMD. It demonstrates clear advantages in both
low-resolution 2D image generation and 3D shape generation.
GRAF, PiGAN and PartNeRF rely on NeRF’s implicit ren-
dering capabilities, employing the marching cubes algorithm
to extract explicit geometric structures. GET3D shows sub-
optimal performance at lower resolutions, suggesting that our
method can produce higher-quality geometric structures even
at low resolutions.
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Fig. 5. Qualitative comparison of rendering effects between our model and related works. Our model produces high-quality and more natural images. DiffTF
shows significant texture stripes, while other baselines fail to capture fine details, like car tires.

TABLE III
THE RESULTS OF THE EVALUATION OF 2D IMAGE QUALITY AND 3D POINT

CLOUD GEOMETRY QUALITY UNDER 128 × 128 RESOLUTION.

Dataset model FID↓ KID↓ (‰) COV↑(%) MMD↓

GRAF 100.08 90.28 36.01 1.23
Pi-GAN 73.67 56.17 31.39 1.11

Car GET3D 36.21 22.50 8.25 1.30
PartNeRF 98.71 85.00 42.70 1.33

GET3DGS(ours) 18.31 8.38 53.21 1.09

GRAF 54.56 22.19 30.41 9.73
Pi-GAN 107.29 82.27 42.16 5.31

Chair GET3D 68.17 41.22 33.98 5.90
PartNeRF 123.76 110.23 51.26 5.87

GET3DGS(ours) 23.79 14.39 72.86 3.07

GRAF 43.90 26.55 38.40 6.89
Pi-GAN 78.68 60.21 34.02 5.98

Plane GET3D 43.29 29.20 36.54 4.06
PartNeRF 100.21 81.27 43.24 3.21

GET3DGS(ours) 13.58 6.54 62.00 1.58

GRAF 75.80 49.10 67.86 1.26
Pi-GAN 148.77 131.68 63.01 1.56

MotorBike GET3D 81.25 46.74 56.72 2.11
PartNeRF 141.68 132.27 56.16 1.73

GET3DGS(ours) 66.69 39.33 73.75 1.03

Table IV presents a quantitative comparison of the metrics
of our model at a 256 × 256 resolution against other baselines.
Our model outperforms all baselines across all four metrics.

Table V presents the results obtained at a resolution of 512

TABLE IV
THE RESULTS OF THE EVALUATION OF 2D IMAGE QUALITY AND 3D POINT

CLOUD GEOMETRY QUALITY UNDER 256 × 256 RESOLUTION.

Dataset model FID↓ KID↓ (‰) COV↑(%) MMD↓

GRAF 194.70 167.00 28.91 1.34
Pi-GAN 62.60 41.12 32.34 1.31

Car GET3D 24.03 13.23 21.45 1.12
PartNeRF 145.41 117.49 49.53 1.52

GET3DGS(ours) 14.54 6.15 62.36 1.07

GRAF 100.20 74.71 26.62 10.98
Pi-GAN 90.28 70.02 41.12 6.01

Chair GET3D 37.12 22.18 51.27 4.20
PartNeRF 129.09 108.67 70.20 4.22

GET3DGS(ours) 24.40 14.33 78.17 3.69

GRAF 169.80 140.60 49.82 2.01
Pi-GAN 89.87 69.82 63.27 1.92

MotorBike GET3D 76.21 48.76 63.72 1.80
PartNeRF 145.43 135.06 64.38 1.45

GET3DGS(ours) 75.11 45.28 76.25 0.93

GRAF 111.75 93.12 13.43 9.01
Pi-GAN 101.54 87.11 23.17 7.65

OmniObject3D GET3D 43.32 21.77 31.23 5.28
GET3DGS(ours) 27.40 10.27 34.27 4.46

× 512. In this study, we introduce DiffTF and GaussianCube,
and retrain them on our experiment setting. The table also in-
cludes a comparison with selected works on 3D unconditional
point cloud generation to evaluate the quality differences be-
tween our model and purely geometric generation models. The
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Fig. 6. Qualitative comparison of 3D shape generation between our model and baselines. The baselines either lack geometric detail or exhibit floating artifacts.
In view of the representation form of 3DGS, we demonstrate the point cloud geometry of our model, and the point cloud rendering method remains consistent
with PointFlow [33].

experimental results demonstrate that our model has better FID
and KID metrics on car, chair and OmniObject3D datasets.
Regarding geometric quality, our model surpasses DiffTF on
the MotorBike and Car datasets. Although the geometric qual-
ity of our model is slightly lower than DiffTF in conditional
generation tasks, it exhibits superior image rendering quality.
In comparison to GaussianCube, our approach demonstrates
superior performance in terms of image quality on the car,
chair and omniobject3d datasets. Although the image quality
on the motor datasets is inferior to GaussianCube, the geomet-
ric quality is superior. GaussianCubes generally have better
geometric quality, but have poorer geometric diversity on the
Shapenet dataset. Comparisons with 3D baselines indicate that
the geometric quality of our model closely aligns with their
performance under 3D data supervision, and in some cases
even exceeds it.

The qualitative comparisons between our model and the
baselines across different datasets demonstrate that our model
excels in generating clear and detailed synthesized images for
2D image synthesis tasks, as shown in Fig. 5. Furthermore,
our model exhibits a strong ability to generate complex point
cloud structures for 3D geometry generation tasks, capturing
finer details compared to the mesh surfaces produced by the
baselines, as illustrated in Fig. 6. Additionally, our model
effectively learns geometric information within the interiors
of objects.

Fig. 8 and Fig. 9 qualitatively demonstrate the impact of
varying texture noise and shape noise on image synthesis.

Our model effectively decouples shape and texture, enabling
controllable generation of 3D Gaussians.

The inference speed of our model and the baselines was
evaluated on a single RTX 4090. The results presented in Fig. 7
show that our model requires only 28ms on average to generate
an object, which is significantly faster than the diffusion-based
generation methods. With a comparable inference speed to
GET3D, our model is characterized as a rapid 3DGS assets
generator.

Fig. 7. Comparison of inference speed between our model and each baseline
model on a single RTX 4090.
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Fig. 8. The result obtained by changing texture noise zt. The texture of the object changes as the texture noise varies, while the shape remains constant.

Fig. 9. The result obtained by changing geometry noise zg . The shape of the object changes as the geometry noise varies, while the color remains constant.

TABLE V
THE EVALUATION OF 2D IMAGE QUALITY AND 3D POINT CLOUD

GEOMETRY QUALITY UNDER 512 × 512 RESOLUTION. THE UNDERLINES
REPRESENTS BETTER GEOMETRIC PERFORMANCE OF THE 3D BASELINE.

Dataset Type Model FID↓ KID↓ (‰) COV↑(%) MMD↓

3D PointFlow - - 60.57 0.85
3D DiT-3D - - 31.70 2.98
3D DPM - - 60.24 0.95
3D PSF - - 70.73 1.03
3D MeshDiffusion - - 66.55 1.12

Car 2D→3D GET3D 13.19 5.66 44.13 0.80
2D→3D DiffTF 73.21 58.72 49.53 1.36
2D→3D GaussianCube 16.77 5.22 61.48 0.90
2D→3D GET3DGS(ours) 11.03 4.17 66.97 1.04

3D PointFlow - - 72.94 2.67
3D DiT-3D - - 76.83 2.82
3D DPM - - 81.73 2.87
3D PSF - - 81.92 2.65
3D MeshDiffusion - - 82.26 2.65

Chair 2D→3D GET3D 30.16 18.32 69.92 3.90
2D→3D DiffTF 80.56 65.34 76.22 3.64
2D→3D GaussianCube 32.17 15.06 63.39 3.60
2D→3D GET3DGS(ours) 24.41 13.68 75.44 3.90

3D PointFlow - - 64.57 0.88
3D DiT-3D - - 75.34 0.81
3D DPM - - 80.67 0.99
3D PSF - - 74.46 1.25
3D MeshDiffusion - - 89.04 1.08

MotorBike 2D→3D GET3D 74.04 45.66 65.75 1.74
2D→3D DiffTF 102.46 88.95 41.02 6.05
2D→3D GaussianCube 58.95 30.03 68.60 0.95
2D→3D GET3DGS(ours) 61.15 33.98 81.25 0.92

2D→3D GET3D 28.92 12.01 31.21 6.34
OmniObject3D 2D→3D DiffTF 93.85 51.88 34.59 6.05

2D→3D GaussianCube 26.45 11.15 35.10 6.26
2D→3D GET3DGS(ours) 26.26 11.13 32.59 6.46

C. Ablations

Ablation of Triplane and Bi-plane. Features are sampled on
three planes (Triplane) using Gaussian templates, as well as on
two planes with our proposed Bi-plane method. A comparison
of generation results on the Car and Chair datasets at a
resolution of 128 × 128 provides valuable insights. Notably,

our Bi-plane method has a similar number of parameters
to the Triplane method but is slightly more compact. As
shown in Table VI, the Bi-plane method achieves significant
improvements in generation performance, potentially due to
higher feature utilization. The number of interpolation points
on the plane grid used by the sampling points was calculated,
along with the feature utilization. The results indicate that our
proposed method achieves a feature utilization rate of 93.9%,
which is 13% higher than that of the Triplane method.
Ablation of Deformation Method. A comparison was con-
ducted to assess the impact of different deformation methods
on the generation effect. Specifically, the direct radial deforma-
tion method and the radial plus rotation deformation method
were compared in this experiment. The experimental results
presented in Table VII suggest that our deformation method
results in better generation performance. This superiority can
be attributed to the direct radial deformation method’s limita-
tion in handling the uneven distribution of frequency details
within the object.
Ablation of Single and Double Fields. A comparative anal-
ysis was conducted to evaluate the effects of employing a ge-
ometric texture dual branch versus a separate coupling branch
on the generated results. Specifically, one noise was used to
jointly control object properties, while two noises were used
independently to control geometric and textural properties. As
shown in Table VIII, the implementation of a dual-branch
structure may cause a slight decrease in image synthesis
performance for the car dataset but enhances the geometric
quality and diversity of the point cloud. For the chair dataset,
no significant impact on image quality was observed, but there
was an improvement in geometric quality. In conclusion, while
the dual-branch structure may not significantly affect overall
performance, it greatly enhance user controllability.
Ablation of Progressive Densification Training. This ex-
periment examines the impact of applying a progressive
densification training approach on generation quality. The
experiment evaluated the time required to train the model
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TABLE VI
THE EFFECT OF TRIPLANE AND BI-PLANE ON IMAGE AND POINT CLOUD

QUALITY. (LR=0.002, BS=96, ITER=4000K)

Car 1282 Chair 1282

Params Rate FID↓ KID↓ COV↑ MMD↓ FID↓ KID↓ COV↑ MMD↓

Triplane 84.38M 80.99% 18.16 8.89 53.96 1.09 24.15 14.85 71.19 3.86
Bi-Plane 84.14M 93.9% 17.34 8.01 54.20 1.08 23.79 14.39 72.86 3.07

TABLE VII
EFFECTS OF DIFFERENT DEFORMATION METHODS ON IMAGE AND POINT

CLOUD QUALITY. (LR=0.002, BS=96, ITER=4000K)

Car 1282 Chair 1282

FID↓ KID↓ COV↑ MMD↓ FID↓ KID↓ COV↑ MMD↓

radius 18.71 8.75 55.60 1.30 24.34 14.86 71.33 3.95
radius+rot 17.34 8.01 57.20 1.08 23.79 14.39 72.86 3.07

Gen GT Gen GT

(a)

(b)
Fig. 10. Two existing problems with DiffTF. (a) DiffTF produces a serious
phenomenon of copying data sets. It is easy to find the same objects in the
dataset as the generated samples. (b) The object texture generated by DIFFTF
has layered stripes.

until optimal performance was achieved. Experimental results
presented in Table IX demonstrate that this approach can
reduce the training time of the model without compromising its
performance. Additionally, adopting this strategy helps reduce
training failures.

V. DISCUSSION

As shown in Fig. 10b, the output samples generated by
DiffTF exhibit noticeable striations, which complicate the
accurate computation of FID and KID, resulting in suboptimal
scores. Based on the geometric properties of DiffTF, the
generated mesh structure also displays striation-like geometric
patterns, leading to anomalies in the corresponding textures.
Additionally, the mesh shows prominent floating artifacts.

Analysis of the synthesis images of DiffTF indicates a
significant presence of textual elements and icons incorporated
as textures into the model. As shown in Fig. 10a, this finding
suggests that DiffTF leans more towards reconstruction rather
than generation, as it nearly replicates the text and patterns
from the dataset. This inclination may be attributed to the
design of DiffTF, which includes a reconstruction process
followed by the training of diffusion models.

GaussianCube is similar to DiffTF, as both adopt the de-
sign principle of reconstruction followed by diffusion. After

TABLE VIII
EFFECT OF SINGLE BRANCH AND DUAL-BRANCH ON THE QUALITY OF

IMAGE AND POINT CLOUD. (LR=0.002, BS=96, ITER=4000K)

Disentangle Car 1282 Chair 1282

shape tex FID↓ KID↓ COV↑ MMD↓ FID↓ KID↓ COV↑ MMD↓

union × × 15.68 6.92 53.21 1.11 23.80 14.91 73.56 3.58
split ✓ ✓ 17.34 8.01 54.20 1.08 23.79 14.39 72.86 3.07

TABLE IX
EFFECT OF PROGRESSIVE DENSIFICATION TRAINING ON THE QUALITY OF

IMAGE AND POINT CLOUD. (LR=0.002, BS=96, ITER=4000K)

Training Car 1282 Chair 1282

Time FID↓ KID↓ COV↑ MMD↓ FID↓ KID↓ COV↑ MMD↓

w/o. progressive 2D 17.68 8.00 54.18 1.08 24.22 15.08 70.24 3.31
progressive 1D 10H 17.34 8.01 54.20 1.08 23.79 14.39 72.86 3.07

filtering out points with transparency values less than one
thousandth, we still observe a greater number of floating
objects in the point cloud. This phenomenon may be attributed
to the unevenness of the 24 randomly captured perspective
images. Since our experimental settings align with those of
GET3D, we captured 24 images of each object from random
angles within a specified range when constructing the 2D
dataset. This approach may influence the reconstruction stages
of both GaussianCube and DiffTF, as numerous studies have
shown that sparse viewing angles can lead to significant
floating artifacts in 3D graphics assets.

In contrast, the proposed model does not exhibit the afore-
mentioned issues. It generates smoother and more natural sam-
ples compared to GET3D. The incorporation of 3D Gaussians
in this approach facilitates better fitting of smooth surface con-
tours, resulting in enhanced FID and KID scores. Conversely,
the transparency attribute of 3D Gaussians enables the capture
of intricate geometric structures within objects, outperforming
GET3D, which focuses solely on surface learning.

The model also exhibits limitations. Variations in scaling
thresholds may impact the final geometric quality, necessitat-
ing adjustments of thresholds tailored to specific datasets. Fur-
thermore, datasets containing multiple classes with long-tail
distributions, such as OmniObject3D, may present challenges,
including class confusion and reduced generation quality.

The contribution of this model is the efficient and precise
generation of 3DGS assets, complemented by an interface
for separating texture and geometry. Although controllable
generation based on text and other inputs has not yet been
explored, this research provides a method for separating 3DGS
attributes and highlights the potential for integration with
various conditions. Future studies will focus on the alignment
and control of multimodal conditions in latent spaces.

VI. CONCLUSION

This paper presents GET3DGS, a novel, fast, and high-
fidelity 3D Gaussian assets generator designed to meet the in-
creasing demand for rapid material generation in the evolving
field of 3D Gaussians, thereby accelerating the development of
related intelligent simulation engines. By constructing points
deformation fields utilizing the proposed geometry collapse
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fields and points SH fields, it is possible to synthesize shapes
and textures that align with the dataset distribution while
achieving disentangled control between geometry and tex-
ture. The model also demonstrated stable training through
the proposed progressive dense training strategy. Experiments
indicate that the model achieves high image and geometric
quality, surpassing previous works across most metrics.
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